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Abstract. A careful study of the physical properties of a family of coherent states on the
circle, introduced some years ago by déBe and Goralez (in 1992 Semiclassical behaviour

of the Weyl correspondence on the cir€eoup Theoretical Methods in Physiesl| | (Madrid:
Ciemat)), is carried out. They were obtained from the Weyl-Heisenberg coherent stafeRjn

by means of the Weil-Brezin—Zak transformation, they are labelled by the points of the cylinder
$1 x R, and they provide a realization & (S1) by entire functions (similar to the well known
Fock—Bargmann construction). In particular, we compute the expectation values of the position
and momentum operators on the circle and we discuss the Heisenberg uncertainty relation.

1. Introduction

This paper is devoted to the study of the physical properties of a family of coherent states
(CS) defined on the circle (i.e. belonging IF(S')) and labelled by the points of the
cylinder. These CS were introduced by de&®e and Gordez in [DG 92, DG 93], where

they were simply sketched. Here we study them more deeply. Our aim is to contribute to the
development of the quantum theory on periodic phase spaces. Among these phase spaces
we pay particular attention to the cylinder because of their relation with physical systems
with periodic motion and their non-trivial topology. Moreover, the quantum formalism on

the cylinder is far from being completely understood.

It has been proven that families of CS are relevant in the study of many quantum systems
[KS 85, PE 86], but this formalism presents some difficulties when one wishes to apply it
to the cylinder. For instance, the cylinder can be seen as a coadjoint orbit of the Euclidean
group of the plane but, in a strict sense, the Perelomov method [PE 86] for constructing
CS with this group does not work (de&®ire [DB 89] and Isham and Klauder [IK 91] have
demonstrated two different ways in which to avoid this problem). Nevertheless, the CS
introduced here are not obtained by any of these procedures, but by decomposition of the
standard Weyl-Heisenberg CS Bn The machinery to carry out such a decomposition is the
Weil-Brezin—Zak (WBZ) transform [JA 82, FO 89], which was originally used for the study
of periodic potentials [ZA 68, RS 78]. This WBZ transform relates the quantum formalisms
on the plane and on the cylinder (or on the torus considered as phase space [BB 96]).
Roughly speaking, this procedure maps functions of one variable on quasiperiodic functions
of two variables by a generalization of the Bloch functions.

As an application, these CS can be used to study a quantum particle on the circle as has
been done recently by Kowalskt al [KR 96]. Although they assume to use CS different
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from ours and to have obtained a better approach to this problem, it is easy to prove that
their CS are a particular case of the CS used here, which shows the wider generality of our
approach.

The paper is organized as follows. In section 2 we review the main properties of the
WBZ transform that plays a central role in our work. Section 3 is devoted to the CS on
the circle, which are obtained by decomposition of the standard Weyl-Heisenberg CS on
R (i.e. CS belonging td.2(R)); in other words, the CS on the circle are the image of the
Weyl-Heisenberg CS by the WBZ transform. These CS on the circle provide a realization
of the spaceL?(S?) in terms of entire functions as shown in section 4, in analogy with
the Fock-Bargmann representation Iof(R) provided by the Weyl-Heisenberg CS. Part
of the results of sections 3 and 4 have been published in [DG 92]. Section 5 presents a
generalization of the CS on the circle to ardimensional torud™, thus we will obtain a
family of CS in L%(T"). The physical properties are studied in section 6, paying special
attention to the expectation values of the position and the (angular) momentum operators,
and to the Heisenberg uncertainty relation. The last section is devoted to proving that the
CS of [KR 96] agree with our CS for the particular parameter values that characterize theirs,
and to present some conclusions.

2. The Weil-Brezin—Zak transform

It is a well known fact thatL?(R) is isomorphic toL?(S* x $¥*), where $** is the dual
space ofS™. This result has been used, for instance, in solid state theory to construct the
Bloch functions [ZA 68, RS 78], as well as for quantum description of periodic variables
[ZA 69]. In this context, we call the WBZ transformi to the unitary map fromL?(R)

to L2(S* x §%*) [JA 82,FO 89]. If we identifyS? with the interval [Qa) and S** with

[0, 27 /a), thenT is explicitly given by

(TY)(g. k)= Y & *y(q—na) (2.1)

n=—0oo

for ¢ € L2(R), ¢ € S* andk € S¥*. Conversely,

a 27 /a .
V(g —na) = Z/ dk e "k (T ) (g, k) geStnel. (2.2)
0

In this way, the functiong  are periodic ink and quasiperiodic i,

(TY) (q + na, k + m%) = &"*(Ty)(q. k) n,m e 7. (2.3)

Note that if we fix a value ok (as we are going to do from now on) the operator given
by (2.1) is a projection ontd.?(S%), which we denote byr'®, and we get the so-called
constant fibre direct integral decomposition [RS 78],

[S7]
L°R) = [ dk L?(SY. (2.4)
Sl*

In this case, we will frequently use the notatidf”y = *, and we will say thaiy® is
obtained by decomposition af.
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3. Coherent states on the circle

In this section we show that a family of CS Iif(S1) can be constructed by decomposition
of the standard Weyl-Heisenberg CSIIA(R). The latter are given as an orbit under the
Weyl-Heisenberg group [KS 85, PE 86]:

. i i y
My,p(x) 1= eXp<fl(pQ - yP)) no(x) = eXp<}:lp (x - 5)) no(x — y) (3.1)
wherex,y, p € R andng € L3(R) is a fiducial state, which is usually chosen to be a
normalized Gaussian:

w

no(x) = (%)1/4 exp(— E_xz) . 3.2)

Now, we can use (2.1) to construct the functiof}§, e L?(S%) (or |y, p; k) in Dirac’s
notation) and it is natural to ask if, for each valuekgfthis set of functions will also be

a set of CS, labelled by suitable valuesyofind p. The answer is positive, according to

the generalized definition of CS given in [KS 85]: simply, a family of states depending
continuously on a set of labels and fulfilling a resolution of the unity. They are not
constructed by Perelomov’s method [PE 86], as an orbit under a Lie group representation.
Actually, we have here a non-trivial example of the ‘reproducing triplets’ introduced in
[AA 91].

Theorem 3.1For eachk € S**, the family ("), = |¢. p; k)I(¢, p) € S* x R}, wheren, ,

is given by (3.1) with||no]| = 1, is a set of coherent states £f(S?); i.e. they verify the
following resolution of unity:

1 a o0
2——/ dq/ dplg. pik)(q, ps k| = 1. (3.3)
h 0 —00

The proof consists of a simple calculation, using definitions (2.1) and (3.1) [GO 96]. If
we chooseyg according to (3.2), these CS take the form

(k) A ® \1/4 I * _ 1 * N2
Ng.p@) = <_nE> exp| 5 =P | €xp _Za)E(Z wq’)
LA
x0 (IZ_(Z wq' — ikh); ,01) (3.4)

wherez* = wqg+ip, p1 = exp(—‘%i”), andd(z; p) = > o2 n? g2inz lp| < 1, is the Theta

n=—0o0 p
function (sometimes denoted Ioy) [WW 27,AS 72, ER 81, MU 83].
As a corollary to the preceding theorem, we present a typical property of every set of
CS [KS 85].

Corollary 3.2. The mappingw® : L2(s1) — L?(S* x R) given by
WD) (q. p) = (q. p: kl) (3.5)
is an isometry, andv® (L2(SY)) is a reproducing kernel space, with kernel

T /7 ,;k ) ;k
2nh<q pklg, p; k)

To compute this kernel, let us consider the orthonormal basis’is?):

1 21
{|n; ky=— expi<—n +k) q n e, ke S* fixed } i (3.6)
Ja a
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Then we can write

o0
g, pik) =Y P Pn; k) 3.7)
n=—00
where the coefficients are
Pk — Znﬁé[p/(%)f(Znn/aJrk)]q% <<2_”n + k> - p> (3.8)
a a
7o being the Fourier transform afy. Now, using (3.2) and (3.8), we easily obtain
(g’ P/ klg, pik) = Y (g, ps kins k) (ns Klq, pi k) = ) el rclard)
n=—00 n=—oo
2 T[E'k(’— i(Gp—q' p)) 2R o[k — p)2+(Rk— p')2] ) 200F0
— Z | 22 dka'=a) dap—q'p)/2h o= [(hk=p)*+(hk—p')*] /200
a w
[ , i ,
X0\ — (@' = @)+ =@k —p—p)|:p2 (3.9)

”
where p, = exp(—2Z}).

Note that these CS are not normalized. It follows immediately from (3.9) that
mh

2 _ _(2m
(q. piklg. pik) = =,/ —e ="/ ('_(hk - Pp); pz) : (3.10)
a w wa

Taking into account the identity

a w 7 . C()az
0(z; p2) = 5 ln_]/_le—wazzz/@nzh)@ (_Imz; pi-/2> (3.11)

which is easily deduced from the so-called functional equatiod fER 81, MU 83], we
also obtain the expression

a
(@ p: kig. pi k) = 0 (52 — p): p1%). (312)

4. A realization of L?(S*) by analytic functions

Let us consider again the isometw® given by (3.5). If we define the new mapping

i
(BY9)(2) = exp| 5=z | WY9)(q. p) (4.13)
2wh
i
=exp( 5=pz ) (g, piklp) @ e L*(SH (4.1b)
2wh
with z = wg — ip, then B¥¢ is an analytic function ors® + iR (becaused(z; p) is
an entire function ofz). This suggests that we should search for a representation of
L?(SY) by entire functions, similar to the standard Fock—Bargmann representatiohRf
[BA 61, PE 86, FO 89]. In this context, it is quite natural to define a new set of CS, labelled
by z* = wq +ip, by
[
|2*; k) = exp| —5—=pz" | lq, p; k) (4.29)
2wh

® = (2N exof = E =2 o (19— v’ — ik:
@)= (=7) exp( )0 (i — g’ — ikB): ) (4.20)
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such that we simply have
(BP9 (2) = (z; klp) @ € L(Sh). (4.3)

Note that we write|z*; k)T = (z; k|. Since|z* + wa; k) = e%|z*; k) (which is easy to
check) we can extendB®¢)(z) to the whole ofC, so obtaining an entire function af
Yo € L%(SY). Moreover, the CSz*; k) fulfil the resolution of the unity:

1 a o0 _
P / dg / dpe /P12 k) (2 k| = 1. (4.4)
27Th 0 —00

HenceB® is an isometry from.2(S?) into the space

F = {w(z) entire, ¥ (z + wa) = e‘“"w(z) and

1 @ o0 2/ 7 .
||1ﬁ||2f=2n—ﬁ/0 df]/ dpe” /(wh)llﬁ(z)|2<oo,z=a)q—lp}. (4.5)

We see that the spacdgis similar to the usual Fock space. SinB& also mapd.?(SY)
onto F, as we will see, we have a complete analogy with the standard case. Obviously, we
can define the following orthonormal set fi

{¥n(@) = BPn: k) (@) = (z; kIn; k) |n € Z) (4.6)
and it is not hard to compute the functions

=\ 1/4 - 2 .
Y (z) = (4721_h> exp(—i <2—nn + k> ) exp(l— (ﬁn + k) z) . 4.7)
a‘w 20 \ a w \ a

To prove thatB® is surjective is equivalent to proving that these functions form a basis
for F. But, after (4.7), this amounts to the existence of a Fourier series foyaayF, as
is the case, i.e.

V@)=Y ad@mehde vy e F (4.8)

n=—0o0

because of the quasiperiodicity of the functionsfir{we have introduced, for convenience,
a factor &%/ in the usual Fourier series). Using (4.7) and the orthonormality of the set
{v,}, expression (4.8) becomes

YR = Y W) pYn) VY EF (4.9)

Pr—
where(-|-) » denotes the inner product ¢f and
2
4nh
Clearly, there is a one-to-one correspondence between the coeffigignts) » anda,, so

the set{y,} is a basis and® is surjective.
We can write now some expressions for the invesé of B®:

1/4
W)z = an (“ ‘”) i@rmla+i?/@), (4.10)

BNy = ) (Wal¥)flns k) (4.11a)
N /w dpe /Py k) z=wq—ip. (4.110)
27'[]’1 0 —00
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5. Coherent states on the torus

All the results of the preceding sections can be easily generalized to a higher number of
dimensions. With this purpose in mind, let us take a unitary bgsise,, ..., e,} in R”

as well as a set of real numbdis, as, ..., a,} and let us consider the associated lattice

[RS 78], that is,

L= {aeR”|a=Zmiaiei,mi EZ}. (5.1)
i=1

In the same way, we define the dual bags ..., €,} by €; - ¢; = §;; and the dual lattice

by

- 2
[:’:{beR”|b:Zm,~—nei,m;eZ}. (52)
-1 4
The corresponding basic cell® and (T"’) aren-dimensional tori,
']T":{qeR”|q:Zq[ei,O<q[<a[} (5.3)
i=1
1 2
(’H‘”’):{keRﬂk:Zkiei,ngi <—}. (5.4)
i=1 ai

We shall define the-dimensional WBZ transforni” as a unitary map froni?(R") to
L?(T" x (T")) [JA 82, FO 89], given by

(TY) (g k) =) e"y@-a) zeT'  we(T) (5.5)
ael
with ¥ e L?(R"). The functionsT v verify
(TY)(q+a, k+b) =¥ (Ty)(q, k) acl,bel. (5.6)

From now on, we shall fix a value d&, so that expression (5.5) defines a projectiti
onto L?(T"). We use the notatioff ® vy = ¢ ®,

CS on the torus are obtained as the image urfdét of the n—dimensional Weyl—
Heisenberg CS), , € L2(R"), which we write as

ool ip (z—2 _

Ng.p(T) = eXp<Ep (sc 2)) no(z — q) (5.7)
wherez, g, p € R”, and the fiducial statey € L?(R") is chosen to be a normalized
Gaussian:

w \/4 w 5

no(x) = (rr_l_z) exp(—z_sc ) . (5.8)

In this case, the functiong*) take the form [GO 96]
n/4 : TN e ST N~ 1 .
¥ (q) = (%) e 1Pa/ () dp-q [hgw(a—a)?/(2h) g (E‘Amk — p+iwG(q— q,)]‘9>

(5.9)

whereG is then x n symmetric matrix of the lattice, whose elements gre=e; - e;; A
is ann x n diagonal matrix with elementsg;; Q is anothem x n matrix given by

w
Q=i—=AGA 5.10
2mh ( )
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and @ is then-dimensional Theta function [MU 83]:
O(z|Q) = Y explirm - Qm) exp2im - 2). (5.11)

meZ"

We thus have the following-dimensional version of theorem (3.1):

Theorem 5.1For eachk € (T"), the family of functions

%) =1q.p: k)(g.p) € T" x R"} (5.12)
given by (5.9), is a set of coherent states.if(T"); i.e. they verify the resolution of unity:
]
—_— d dplq, p; k){q,p; k| = 1. 5.13
oy ) 9 dPla-pik)a.p (5.13)

Most generalizations of the one-dimensional results are straightforward [GO 96]. Here
we simply write the expression for the produet, p’; k|q, p; k). After a rather lengthy
calculation, we obtain

2 (ah\'"? . i . . _
(q p klq, p; k) = < ) é(p-q—p“q/)/(Zh)elk-(q/—q)e—[(hk—p/)2+(hk—p)2]/(2wh)

VA
i _
x O (n At |:q’ —q+ ;G_l(th —p-— p/)i| ‘Q) (5.14)
whereg = detG, A = aias . ..a, andQ = —2Q~. Therefore, we also get
2 (aR\"? 2 2
Tk : g (*k—p)*/(wh) g A G YTk — 5.15
(q.p; klg, p; k) = \/_A< > » ( p)|Q (5.15)

Finally, it can be shown [GO 96] that when the lattice is orthogonal, thmg’.f:z?sfactorize
out like a product of one-dimensional CS given by (3.4), i.e.

nM(q) = ]_[ i (g). (5.16)

6. Physical properties of the CS on the circle

This section is devoted to the discussion of the physical properties of the CS on the circle
introduced in section 3 (a complete study has been realized in [GO 96]). As these states
have been constructed by decomposition of the standard Weyl-Heisenberg ICERin
it seems to us that comparison between both cases could be illustrative. Moreover, it is
known that the Weyl-Heisenberg CS have very nice quasiclassical properties, for instance,
to minimalize the Heisenberg uncertainty relation, and it would be of great interest to
reproduce such behaviour on the circle. As a matter of fact, we shall see that the physical
properties of the CS on the circle depend mainly on some dimensionless parameter, related
to the spread of the initial standard CS. If this spread is smaller than the lengfthhe
circle, we get CS on the circle very similar to the standard CS. But if such a spread was
comparable to or bigger than the CS on the circle are rather like plane waves.

We also discuss the relation between the CS paramgtersand the expectation values
in these states of the position and momentum operators208t). Whereas for standard
CS in L?(R) both things are the same, this is not the case on the circle. First we recall
the correct definitions for the position and momentum operator&4s') (which show
some significant differences from their analogues on the real line). Then, we will compute
the expectation values of these operators and, finally, we devote some attention to the
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Heisenberg uncertainty relation on the circle, but in a different and more suitable form than
the usual one on the real line.

In order to provide an easier understanding of the somewhat complicated expressions,
we illustrate our results with several figures. In any case, it has been possible to realize a
complete analytic study [GO 96].

6.1. Quantum mechanics on the circle

The topology of the circle has important consequences for the quantum formalism on this
configuration space. Indeed, experience shows that a direct translation of the formalism
on the real line leads to serious inconsistencies [CN 68, ZA 69, LE 76]. For instance, it is
known that the (angular) momentum operator/ciiS*) has discrete spectrum. Moreover,
functions in its domain must verify the constrainta) = €%¢(0), whereaq is the length of

the circle andk € [0, 2 /a) is a parameter as in section 2 [RS 75]. Thus, in fact, there is
not one but a family of momentum operators bf(S?), labelled byk and which we denote

by P®. As a consequence, a canonical commutation relation &2 (R)

[0.P¥] =ih (6.1)

with position operatorQ defined as usual, is inconsistent if(S'). Heisenberg's
uncertainty relation is even more troublesome, because of the compact spectrgm of
on L2(S1). In effect, this relation allows the position dispersion to be bigger thamhich
has no physical meaning.

All these problems can be solved choosing the unitary opetater exp(i2x Q/a) as
a better representation for the position on the circle [LE 76]. It has precisely a circle as its
spectrum and its commutator with the momentum operator is

(p® g1 =2 g (6.2)
a

which poses no domain problems. From this fundamental relation (6.2) we can also deduce
an uncertainty relation more suitable for the circle [LE 76]. Sidtés unitary but not
self-adjoint, the dispersion E should be defined in the form

(AE)? = (E'E) — (E)* =1— [(E)|? (6.3)

so that relation (6.2) yields, by the usual method, the following Heisenberg uncertainty
relation:

2

(aptyz_AE <ZE>2. (6.4)
1— (AE)2 a

Note that now, whem\ P® = 0 we must have\ E = 1, which is a more appropriate result

because of the compactness of the position variable on the circle. Moreover, relation (6.4)

reduces to the usual Heisenberg uncertainty relation when« 1 [LE 76]. Thus, we will

call E the ‘angle’ operator and from now on we will use it as the quantum representation

for the position on the circle.

6.2. Physical properties of the CS on the circle

6.2.1. Probability density. Let us begin the study of the basic physical properties of the
CS|g, p; k) by computing its probability densit, ,.«(¢"). The wavefunctiom®) (¢') of
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these states is given by expression (3.4). As they are not normalized, the probability density
will be

In{, (g7
P, opilg) = —LL—— 6.5
e g kg, pik) ©5)
which, making use of expression (3.12), yields
, o \V2 o l6(al(kh — p) +iw(q — ¢)]/(2h); p1)|?
Py k(@) = (__) g @q—a"%/h ( a A A 1 . (6.6)
mh 6 (a(kh — p)/(2h); py’)
In order to clarify the notation, we introduce two new variables,
1 a _
= (g — = ——(p —kh 6.7
ui=—@q" —q vi= o =(p ) (6.7)
as well as the dimensionless parameter
2
«= %_w. (6.8)
In this way, the probability density, from now on denotedy(«; v), looks like
1 |20 2100+ iau; e)?
(s v) = = | e . 6.9
P (3 v) aVl' m © O(mwv; e /2) (6.9)

This is a periodic function oft and v, in both cases with period 1. This corresponds
to a perioda for ¢’ — ¢ and a period 2i/a for p. To give a general idea of its main
properties, we show in figure 1 some significant cases. We observe that for high vadues of
(approximatelyr > 15) the probability density is, with good accuracy, a Gaussian regardless
of the value ofv. That is, we have the same result as for the standard Weyl-Heisenberg
CS. Note that, for these values @f the width of the Gaussian is always smaller tlharOn

the other hand, for small values @fthe probability density is no longer a Gaussian and its
shape depends crucially on the valuevofOnly whenv = % (i.e.p = (@n+Dn/a+k)h,

with n € Z), does it look like a wavepacket for all values @f(right-hand side of the
figure 1). In all the other cases it tends to be a plane wave when 0 (in the left-hand

side of the figure 1 we show the case= 0).

6.2.2. Expectation value of the angle operatoilo compute the expectation value Bfin
the CSj|g, p; k), we make use of the following relation

Elg, p; k) = €7/

27
q,p+ 7h; k> (6.10)

which is easily deduced from the obvious actionmfon the orthonormal basis; k) in
L?(S%) (see expression (3.6)),
Eln; k) =|n+ 1 k) Vn eZ (6.11)

as well as from expression (3.8) for the coefficients of the|&9; k) in this basis. We
denote the expectation value Bfby (E)(u, v), with v as in (6.7) but

wi=12 (6.12)
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py=0 v=05
2 2
1.5 1.5
/ / 1=0.2
0.5 0.5
u u
0 02 04 006 08 1 0 02 04 06 08 1
2 2
1.5 1.3
7 ! o=S5
0.5 0.5
u u
0 02 04 006 08 1 0 02 04 06 08 1
3 3
2.5 2.5
2 2
1.5 1) o= 15
/ !
0.5 0.5
u u
02 04 06 08 [ 02 04 06 08 [
8 8
6 4]
4 4
=100
2 2
u u
0.2 04 06 08 1 02 04 06 08 1

Figure 1. The functionsaP, (u — 3, 0) (left) andaP, (u — 3, 3) (right), for several values af.

from now on. We also continue using the parametetefined in (6.8). Taking together
equations (6.10), (3.9), (3.11) and (3.12) we finally arrive at
(g, p; kIElq, p; k)
(q. p; klg, p; k)
O (v —3);e7%/?)
O(wv; e ®/2)
Of course, this is a periodic function afbut it is also an even periodic function efwith
period 1. As all the factors exceptin® are real positive [WW 27, ER 81, MU 83], we
can write

(E)Y(u,v) =

— éZnuefnz/(Za) (613)

(E)(u, v) = €*™|(E)|(v). (6.14)
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a=50
08¢
a=15
0.6+
04+
0.2¢F
. L . . . & v
-0.5 0

Figure 2. The function|(E)|(v), for several values ok.

We show the function(E)|(v) in figure 2, for some values @f. Note that, in general,
it is not possible to interpret the expectation valugtodis a measure of the average position
of the CS on the circle because of the dependence. diiowever, observe in figure 2 that
for high values ofw, the function|(E)|(v) is almost constant. Thus in these cases we get
the usual interpretation of the CS parameteas the average position of the quantum state.
On the other hand, we have seen in figure 1 that for small valuesnoebst of the CS are
nearly plane waves, hence it is not so important that the average position in these states
cannot be well defined.

6.2.3. Expectation value of the momentum operata¥e begin the calculation by observing
that the vectors of the basis; k) in L2(S?) (see expression (3.6)) are eigenvectors of the
momentum operatoP ®,

/2
PO k) =T (—”n+k) In: k). (6.15)
a
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Thus, we can write
) N (2 @.p:k) |2
(g, pikIP®lq, piky =k Y (=n+k )7 (6.16)
n=—0oo a

where the coefficients """ are given by expressions (3.8) and (3.2). Also using the
formulae (3.11) and (3.12) we finally find

, 0 k|P®\g, prk ho 0 (rv; e /2
(PO (p) = (g, p; kIP™q, p; k) S L ( d 2) (6.17)
(q. p: klq, p; k) 2a O(mwv; e%/2)
where, for the sake of clarity, we use the two varialjes at the same time, and
6'(z; p) = Ee(z p) = 2i i np" en: Ipl <1 (6.18)
’ dZ ’ n=—00 . -

It is interesting to note that whem= n/2, withn € Z, i.e. p = (nz/a + k)h, expression
(6.17) reduces tdP®)(p) = p as in the standard CS case. For other values,dahe

difference betweer{P®) and p depends on the parameter To show this, let us first
rewrite equation (6.17) using only the variahie

2nh a O (mv; €92 _
p® =—_ - i 1
(P™)(v) , <v+4n G(nv;e“/2)>+kh (6.19)

We represent the functioa/277) ((P®)(v) — kh) in figure 3, for some values of
(remember that 27 /a is the ‘natural unit' for p). We see that for high values of,

the CS parametep is a good approximation for the expectation value of the momentum
operator. But for small values ai, this expectation value tends to take some discrete
values for almost all values af [GO 96]. These are the ‘plane-wave’ states of figure 1.

6.2.4. Heisenberg uncertainty relationWe conclude the study of the basic physical

properties of the C%;, p; k) with some comments about the Heisenberg uncertainty relation

for these states. In the following we try to verify whether some of the |€9; k)

minimalize relation (6.4), which has to be used on the circle, as we remarked above.
Let us denote b)AE’;Tp)A the dispersion of an operatdrin the CS|q, p; k). We begin

by computing this dispersion for the angle operakor According to expression (6.3) we

get

AY B =1 [(E)(u, v)2 = 1 - [(E)|(v)? (6.20)

where|(E)|(v) can be obtained from expression (6.13).
On the other hand, the dispersimﬁzfp)P(k) of the momentum operator requires a few

more calculations. First, we have to compute the expectation aRi&)?), which after
(6.15) can be written as

7,2 0 2
POy () = h 2T k) (a2 6.21
(P (p) @ kg p k) k) e (6.21)

Hence, again making use of formulae (3.8), (3.2), (3.11) and (3.12) we get, after a rather
lengthy but straightforward calculation,

R \? 0" (rv; e7%/2) ha 0/ (rv; €7%/2) h%a
p|+ el

(k)\2 — (= - 7 I
(P >><p>—( (e (6.22)

2a
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I (a)

0.5

0.5+

0.5 0 0.5 /

It ()

ot

-0.5

-0.5 0 0.5 /

Figure 3. The functionﬁ’ﬁ((P“‘))(u) — kh), for several values aof.

with 6”(z; p) = d?0 (z; p)/ dz. Finally, equations (6.22) and (6.17) taken together yield

h 2 0[2 Q/I(JTU' e—ot/Z) 9/(7.[”. e—a/2)2
A® piny2 _ (T hutll ’ — ’ . .
A ) a 4 \ 9(mwv; e%/2) O(wv; e ®/2)2 to (6.23)

We are now able to discuss the uncertainty relation (6.4) for thégCp; k). First, we
define the uncertainty function

(k)
A E
A(U) = a (q.p) A(k) P(k)

2 D) > (4.p)
Y 1- (A(q,p)E)
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1.2F =15

i R . i . . i v

T 05 0 0.5 /

Figure 4. The function%A(v) for several values ok.

. a 1 _1 vz A(k) P(k) (6 24)
2 \(E)|(v)? @n '
In this way, relation (6.4) reduces to
3
A@) > 5 (6.25)

2
which looks more like a standard Heisenberg uncertainty relation, thus making this
discussion more intuitive. In view of expressions (6.13) and (6.23) we arrive at the following
formula:
7 \? 0 . @ /2)2
A(v)2 _ (_) o enz/a (7”)’1 ) -1
2 O (v — 3); €%/2)2
o (0"(rv;e®?) 0 (rv; e %/?)?
- — 1]. 6.26
x [4 <9(7rv; e ez ) (6.26)
We represent the functiai2/h) A (v) in figure 4, for some values of. Observe its somewhat

curious appearance. We remark that variablis related to the CS parametgr and that
parametetr measures whether or not the @S p; k) is similar to a standard CS. In figure 4,
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the value 1 on the vertical scale corresponds to a minimum uncertainty state, and in fact
we see that for high values afthe functionA(v) tends to this minimum, regardless of the
value of v [GO 96]. Nevertheless, none of the Q@ p; k) are real minimum uncertainty
states, although we can obtain states as close to this limit as we wish, takwigiciently
high.

In contrast, when the value afis small we can see that the behaviour of the uncertainty
relation for the CSgq, p; k) depends on the particular value pf i.e. v. As A(v) is an
even periodic function ob, we just need to consider the values<Ov < % Thus, it can
be proven [GO 96] that

%F if v=0 ie.p=(2Z+k)h nez
lim A(v) = _ . . _ 6.27
a—0 %h ifv=1 ie.p=(2n+DZ+k)h neZ (6.27)
I3 in any other case.

In other words, the uncertainty functioh is bounded above at worst, iy} Hence, we
conclude that for the whole family of Cg, p; k) we have

n> A() > % (6.28)

which, although strictly speaking does not correspond to minimum uncertainty states, shows
a quite good behaviour of the Qg, p; k) in this matter. The best behaviour is obtained
for those states associated to the value 0.

7. Conclusions

As mentioned in the introduction, a family of CS on the circle was introduced in [KR 96].
These new CS are a particular case of the CS studied here. The authors of [KR 96] have
not realized this fact and, moreover, they write in the introduction: The coherent states

thus obtained are different from those defined in this paper [DG 93]. Nevertheless, it seems
to us that the approach presented herein is a better one’. These CS are defined as

€)=Y e~ le 1)) (7.1)
J

whereg = % | ¢ R, ¢ € S* and|j) are the eigenvectors of the angular momentum
operator. Two cases are considered in [KR 96]: the boson case jMades integer values,
and the fermion case whentakes half-integer values.

In the following, we prove that these CS (7.1) are particular cases of ouz'CH).
We have (see section 4)

5Kk = D Y@ In; k) (7.2)
wherez = wg — ip, and after (4.7)
=\ 1/4 -~ 2 .
V()" = (472[—11) exp(—i <ﬁn + k) ) exp(—'—(z—”n + k)z*) ) (7.3)
a‘w 20 \ a w a

By analogy with [KR 96], from now on we sét= 1 anda = 27, so thatk € [0, 1). If we
also puté = exp(iz*/w) = exp(—p/w + ig), then (7.2) finally becomes

1 1/4 oo )
|z*;k):<—> D e @ty . (7.4)

Tw oo
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Now, simply comparing expressions (7.1) and (7.4) we see that both coincide (up to a
constant factor) if we seb = 1 andk = O for the boson case, & = 7/a = % for the
fermion case. Indeed, fdr= 0 we get

1 1/4 oo 2/
*; O — - e—" —n ;0 75
|z><n)n=Zoo §7"1n; 0) (7.5)
which obviously coincides with (7.1) whentakes integer values, because expression (6.15)
shows thatn; 0) are the boson eigenvectors of the angular momentum operator. In the same
way, fork = 1 we get

. 1 1/4 oo 0 ) 0
|z*; %) = (_> Z e ( +1/2) /ZS (n +1/2)|I’l; %) (76)

43 n=—0oo

which also equals (7.1) whentakes half-integer values, sin¢e; %) are now the fermion
eigenvectors of the angular momentum operator, as we can see in expression (6.15). This
ends the proof of our statement.

From the study of the physical properties of these CS we can state that they are very
similar to the Heisenberg CS d&, provided that the wideness of the wavefunction is small
in comparison with the length of the configuration sp&ée Otherwise, the properties of
these CS drastically depend on the valuep oMoreover, all the physical properties have
a periodic behaviour in terms of.

It is worthwhile to note that our CS are ‘quasiminimal’, i.e. although they do not
minimize the Heisenberg uncertainty relation, the product of the dispersions of the angle
and momentum operators is bounded abové by —

Finally, we mention that these CS may be used to quantize the cylinder by means of
Weyl correspondence [DG 92, DG 93, GO 96]. Work in this direction is in progress and the
results will be published elsewhere.
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